近期有不少人向大数匠教育,有关数据分析的职业发展问题,可见随着大数据时代到来,数据分析师的职业发展也备受关注。数据分析的路线大致可以划分成:数据分析,数据挖掘,数据产品,数据工程四大方向。
(一)数据分析/数据运营/商业分析
首先基础的是业务方向的数据分析,也称为数据运营或者商业分析。绝大部分人都是从这个岗位开始自己的数据之路,也是基数大的岗位。由于基数大,这类岗位通常鱼龙混杂。虽然都叫数据分析师,有的每天只和Excel表格打交道。而另一种,通过将业务数据体系化,建立一套指标框架,监控数据的波动和异常,找出问题建立和优化指标体系,优化和驱动业务,推动数据化运营,找出可增长的市场或产品优化空间。
数据思维和业务理解是分析师赖以生存的技能。很多时候,工具是锦上添花的作用。掌握Excel+SQL/hive,了解描述统计学,知道常见的可视化表达,足够完成大部分任务。对于Python和机器学习来说只是加分项。
数据分析师是一个基础岗位,如果专精于业务,更适合往管理端发展,单纯的工具和技巧很难拉开差距。数据分析的管理岗,比较常见的有数据运营经理/总监,数据分析经理等,相对应的能力是能建立指标体系,并且解决日常的各类问题。
大数匠教育提示,作为新人,比较普适的发展路线是先成为一位数据分析师。积累相关的经验,在一两年后,决定往后的发展,是数据挖掘,还是专精数据分析成为管理岗。
(二)数据挖掘/算法专家/深度学习
挖掘工程师要求更高的统计学能力、数理能力以及编程技巧。除了掌握算法,同样需要编程能力去实现,不论R、Python、Scala/Java,至少掌握一种。模型的实施,往往也要求Hadoop/Spark的工程实践经验,精通SQL/Hive是必须的。因为要求高,所以数据挖掘的平均薪资高于数据分析师。
数据挖掘的业务领域一样可以细分。金融行业的信用模型和风控模型/反欺诈模型、广告模型的点击预估模型、电商行业的推荐系统和用户画像系统。从需求提出到落地,数据挖掘工程师除了全程跟进也要熟悉业务。数据挖掘的工作范畴可以用于解决优化问题,例如外卖行业,如何寻找骑手效率大化的优路径。在大数匠教育也有这样的实战项目。
数据挖掘工程师往后发展,称为算法专家。后者对理论要求更严苛,几乎都要阅读国外的前沿论文。方向不局限于简单的分类或者回归,还包括图像识别、自然语言处理、智能量化投顾这种复合领域。这里开始会对从业者的学校和学历提出要求,名校+硕士无疑是一个大优势,也有很多人直接做数据挖掘。
深度学习则更前沿,它由神经网络发展而来,是机器学习的一个子集。因为各类框架开枝散叶,诸多模型百花齐放,也可以算一个全新的分支。除了要求熟悉TensorFlow, Caffe, MXNet等深度学习框架,对模型的应用和调参也是必备的。
(三)数据产品经理
这个岗位有两种理解,一种是具备强数据分析能力的PM,一种是公司数据产品的规划者。
前者,以数据导向优化和改进产品。在产品强势的公司,数据分析也会划归到产品部门,甚至运营也属于产品部。这类产品经理有更多的机会接触业务,属于顺便把分析师的活也干了,一专多能的典型。
他们会运用不同的数据源,对用户的行为特征分析和挖掘,达到改进产品。典型的场景就是AB测试。大到页面布局、路径规划、小到按钮的颜色和样式,均可以通过数据指标评估。俗话说,再优秀的产品经理也跑不过一半AB测试。此类数据产品经理,更多是注重数据分析能力,擅长用分析进行决策。数据是能力的一部分。
后者,是真正意义上的数据产品经理。在公司迈大迈强后,数据量与日俱增,此时会有不少数据相关的产品项目:包括大数据平台、埋点采集系统、BI、推荐系统、广告平台等。这些当然也是产品,自然需要提炼需求、设计、规划、项目排期,乃至落地。
从职业发展上看,数据分析师做数据产品经理更合适。普通的产品经理,对前端、后端的技术栈尚未熟悉,何况日新月异的数据栈。大数匠教育研究发现,这个岗位,适合对数据特别感兴趣,但是数理天赋不高的职场人,那么以沟通、项目管理和需求规划为能力,也不错。
(四)数据工程师
数据工程师其实更偏技术,从职业道路上看,程序员走这条路更开阔。在很多中小型的公司,一方面数据是无序的、缺失的、原始的,另外一方面各种业务报表又嗷嗷待哺。没办法,分析师只能自己撸起袖子,一个人当三个人用。兼做数据清洗+ETL+BI。
如果分析师在技术方面的灵性不错,那么技能点会往技术栈方向迁移。从最初的SQL,到了解Hadoop集群、了解presto/impala/spark、了解ELK、了解分布式存储和NoSQL……这也是一个不错的发展方向,因为数据挖掘需要了解算法/模型,理论知识要求过高,不少硕士和博士还过来抢饭碗,自己不擅长容易遇到天花板。选择更底层的工程实现和架构,也是出路,根据大数匠教育毕业学员情况,薪资也不会低于数据挖掘/算法专家。
数据工程师,可以从数据分析师的SQL技能,往数据的底层收集、存储、计算、运维拓展。往后发展则是数据总监、或者数据架构师。因为数据分析出身,与纯技术栈的程序员比,思考会更贴合业务,比如指标背后的数据模型,但是技术底子的薄弱需要弥补。
另外,DBA、BI这些传统的数据库从业者,也是能按这条路线进阶,或者选择数据产品经理方向。
(五)总结:
以上四个岗位就是大数匠教育总结数据分析的发展方向,它们互有关联,如果从整个架构来看,我们可以将其划分为数据收集—数据加工—数据运营—数据触达。大数据工程师偏底层技术,数据分析偏上层业务,数据挖掘和数据产品处于中间形态。不同公司虽然业务形态不一致,架构会有差异,但是职责不会偏差太大。